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Topological Defects in Superfluid Helium 
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Some aspects of classical field-theoretic phenomenology of superfluid helium are 
presented. 

1. INTRODUCTION 

The aim of  this paper is to present a description of superfluid helium 
in terms of  classical field theory (CFT). We apply well-known facts from 
CFT to shed new light on some familiar phenomena. Our approach is for- 
mally identical to that used in the theory of  superconductors. However, from 
our point of  view some aspects of this interpretation are not sufficiently well 
stressed in the literature related to the theory of  superfluids. 

2. RELATIVISTIC APPROACH TO A DYNAMICS OF 
S U P E R F L U I D  H E L I U M  

It is a well-established practice to describe many features of condensed 
matter in terms of an order parameter. For  superfluid helium this role is 
played by a scalar complex-valued field, similar in many aspects to the 
ordinary wave function considered in quantum mechanics. The theory of  
superfluid helium is usually treated as unrelativistic. Our approach, inspired 
by Anandan and Morrison (1981; Putterman, 1974) is consequently 
relativistic. 

Let us start the discussion from the construction of the Lagrangian. Let 
q~(x) denote an order parameter for superfluid helium. The simplest form of 
a Lorentz-invariant dynamical term for a complex-valued scalar field is 
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gUV(oMp.v, where g u v = d i a g ( 1 , - 1 , - 1 , - 1 ) .  Conventionally, guv is intro- 
duced by the relation ds 2 =gu~ dx  ~ dx  ~ = c 2 dt 2 - d x  2 - @ 2  dz 2, where c is 
the velocity of light. In our approach c is no longer the velocity of light, but 
rather the velocity of the first sound in superfluid helium. The reasons for 
making this assumption will become clear in the further discussion of the 
field equations. A full description requires that we add a potential term to 
the Lagrangian. A simple model of superfluid helium treats it as a weak 
interacting Bose gas, which can be described in terms of some ~04 field 
theory. Then the potential term takes the form 

V(q~rp*)=A.(rpo2-~o~p*) 2, ~., rpo=const, ~ > 0  

The Lagrangian of "superfluid field theory" takes the form 

= d~cp c~'~P * - V0pq~*) 

This Lagrangian was constructed to be Lorentz invariant. Another sym- 
metry is its global U(1) symmetry: when ~0 is transformed by q~ ~ eiatp, a ~ ~, 
a = const, the Lagrangian is unchanged. 

Further discussion of the field equations and their properties is based 
on Huang (1982). 

By a procedure of variation of ~p one obtains the field equation 

~V c3~ c~Uq~= --2A,(q~ 2 -  I ~012)r (1) 
c~o* 

which is a nonlinear Klein-Gordon equation. 

3. THE ROLE OF A GLOBAL SYMMETRY BREAKING 

It is interesting to investigate solutions of (1) possessing the lowest 
energy. The Hamiltonian of our field is as follows: 

H= f d3x I~ ~t~~ IVq~12+ V(~~176 
The solution minimizing this Hamiltonian takes the form tp= (po e ia~ 

where a o e ~  is arbitrary. It is easy to check that this solution is not U(1) 
invariant. This phenomenon is called in the field theory a spontaneous sym- 
metry breaking. 

From the Goldstone theorem it is known that the spontaneous sym- 
metry breaking of any global continuous symmetry is accompanied by a 
generation of a new massless and spinless particle. 
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For superfluid helium this theorem is fulfilled. To see that, let us con- 
sider slightly excited modes of the form 

~o(x) = [~Oo + r/(x)] d ~(x) 

where O(x) and a ( x )  are new real-valued fields, which are assumed to be 
small. The Lagrangian for these modes, limited to terms of second order in 
t/, a, takes the form 

= a , r / ~ ' r / -  4Z~pgr/2 + ~p2 8 ~ a  O u a  

One sees that the field 17 describes free scalar particles of the mass 
m = (2h /c ) ;~ l /2q )o ,  and the field a describes free scalar particles of  zero mass 
predicted by the Goldstone theorem. We interpret these new particles as 
phonons, whose dynamics is governed by the wave equation 

0,~ ~ua =0  

Therefore the velocity c defined by the metric tensor 

c 2 d t  2 - d x  2 - d y  2 - d z  2 

must be interpreted as the velocity of sound in the wave equation. 

4. FROM PHONON TO ROTON BRANCH OF 
SUPERFLUID HELIUM 

The model described above is useful in the phonon branch of superfluid 
helium; the roton branch still needs a description. Surprisingly, the descrip- 
tion of rotons is possible in similar Lagrangian theory if we extend the global 
U(I) symmetry to the local one. 

In this procedure new fields called "compensating" or "gauge" have to 
be introduced, to fulfill the required invariance. 

Local invariance means invariance with respect to transformations of 
the form 

q~(x) ~ e- i~(x)~p(x) (2) 

Let us start by changing partial derivatives into covariant ones, to 
obtain the required symmetry: 



1608 Owczarek 

where m is the mass of a helium atom, and v u is the gauge field, which 
transforms with respect to (2) in the following way: 

h 

m 

The Lagrangian 

5F(~o, q~,u, v u ) =  (DuqO(D~'~~ * -  V(cpq~*) 

has to be completed by dynamical terms of the field v.. Since the Lorentz 
invariance and U(1) local invariance are required, we introduce the term 
_ �88 u v F  u v into the Lagrangian, where F.  v = v v , . -  V.,v, and obtain a linear 
equation for v.. 

Finally, we obtain the Lagrangian of  the form 

~t,(q~, r vu ' v~,,,,) = (Durp)(D~'~o) * - V(~p~o*) - � 88  ~'v 

where V(tptp*) is of  the same form as above. 
Formally this Lagrangian is identical to the Lagrangian of the scalar 

electrodynamics. The field equations are of the following form: 

O V  
D . D ~' q) = - 2)t. ( qj2 _ q)tp. ) q) 

~r (3) 

3 v F  ~ ~ = j u  

where 

m 2 
m q~. i m (p. f i~0-  2 (tp(p*)v" j . = i i  O"~o= ~ 

is the conserved current: O.j'" = 6.~vF" v _ 0. 
We are looking for solutions to the system (3) possessing the lowest 

energy. Le t /5  and & be fields defined as follows: 

D i = F i~ 

The Hamiltonian of  our system is of  the form 

H = ~ d 3 x  [�89 I~c]2+ [/5cp[2+ v(~0~0*)] 
J 
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where 7r = (D~ * is the momentum conjugated to rp,/Sip denotes the spatial 
part  of/Y'q~, and boundary terms were omitted because we assume the 
considered fields to be of limited range. 

F rom the form of the Hamiltonian it is obvious that the solution of (3) 
possessing the lowest energy is of  the form: 

v"(x)=0 

q~(x) = (Poe i~~ ao is arbitrary 

This solution is also not invariant with respect to local U(1) 
transformations. 

It is convenient to use a unitary gauge to describe the excited classical 
modes of  this solution. This gauge is introduced in such a way that the field 
(p becomes real and its phase is compensated by the gauge transformation 

~o(x) = p(x ) ,  p is real 

In such a gauge, slightly excited modes take the form 

p(x)  = ~ + rl(x) 

v '~(x)=O+vU(x)  

where 7/and v u are considered to be small. 
The linearized field equations in terms of  the variables defined above 

are of  the form 

[]  + 2 q~ v ~ = 0 (4) 

(D] + 4Xtpo2) r /=0  (5) 

Equation (4) describes particles of  spin 1 and mass m~=21/2(m/h)~Oo, 
and equation (5) describes particles of  spin 0 and mass m,=2Zv2(00. In 
contrast to spontaneous global symmetry breaking, a spontaneous local 
symmetry breaking does not generate any new particles. 

There is a very interesting physical interpretation of  the massiveness of 
the gauge field v ~. The field strength F u v is zero in superfluid helium except 
in very thin areas of  a size of  about the Compton wavelength of  the gauge 
field, which is inversely proportional to the mass rn~ of  the gauge field: Zc = 
Ji/moc. If  rotons play the role of carriers of  the gauge field (m~= 0.16m/~o), 
and the Velocity of sound is equal to c-- 238 m/sec, the Compton wavelength 
is Zc ~ 1 ,~. It is a quantity of the same order as the experimentally measured 
sizes of vortices in superftuid helium. 
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5. QUANTUM VORTICES AS TOPOLOGICAL DEFECTS 

Classical field theory of superfluid helium is a good tool to describe 
quantum vortices, as will be seen in further discussion of the field equations. 
There exist solutions of field equations of the vortex form. These solutions 
are topologically nontrivial and can be described in terms of homotopy 
groups. 

Let me begin from topological considerations. The possibility of the 
existence of topological defects of a dimension k (k = 0, 1, 2) in an arbitrary 
theory is characterized by the nontriviality of the ( 2 -  k)th homotopy group 
of the manifold of ground states, i.e., ~rz-~(M) 50  (Kibble, 1976). 

For superfluid helium the manifold of ground states is homeomorphic 
to a circle M = S  1, where S 1= {~Po eia~ aoE~}. 

Homotopy groups of rank q for S 1 are the following: 

0, q ~ 1 
7t'q(S1) = ~, q= 1 

Hence only one-dimensional defects are possible in superfluid helium. 
They are identified as quantum vortices. 

We are looking for cylindrically symmetric static solutions of field equa- 
tions of a vortex form. Consider the gauge v~ = 0 and suitable boundary 
conditions: 

h 
~3(x) txl ~ '  -- Va(2) (pure gauge) 

m 

~0(x) ~ q~o e/~)  

Consider the boundaries in the form of a cylinder with a large radius 
R. Let a(O), ~0(0), 0 <  0 <2Jr, denote a(2), tp(2) limited to this cylinder. A 
function tp(0) must be a continuous one, because it satisfies a differential 
equation: ~0(2Jr) = tp(0) ~ a (2 Jr) - a (0) = 2~rn, n e Z. 

A flux of the gauge field strength F u v has to be quantized: 

n ~ Z  

This is the well-known rule of quantization of the vorticity in superfluid 
helium. 
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In the static case, when the gauge v ~ = 0, div ~ = 0 is taken into considera- 
tion, the field equations take the form 

q,= - 2 z ( d -  V - i  m 2 

It is convenient to introduce polar coordinates (r, 0) and to look for 
solutions of  the form 

~(r, O) = v(r) ~o 

q~(r, O)=p(r) e inO, nsg  

If  one introduces a function F(r) by 

v(r) = n  [1 - F ( r ) ]  
e r  

then the field equations take the form 

F,,_F'_2e2p2F=O 
r 

p '  n2F 2 
p" -~ r2 p - 2~,p( p 2  _ ~0 2) = 0 

r 

where prime denotes ~/gr. 
These equations are supplemented by the boundary conditions 

F ( r )  r~cx~ ~ 0 

p(r) ~ ~Po 

and the condition F (0 )=  1 for n ~ 0 must  be satisfied to fulfill the condition 
of quantization of  vortex field i.e., 2to ~o dr rco(r) =2ten~e, where c0(r) is 
defined by 

oh(r, 0) = rot ~ = co(r)~ 

One may prove the existence of  a solution of  this system of equations 
by variational methods. The asymptotic behavior of  such a solution has the 
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following form: 

co - - ~  const 
r---~0 

p ~ 0, as r m for some m > 0 

co r ~  ) O, as e - r  

p ~--~ ~0 

From the asymptotic behavior of  these solutions one may conclude that 
they really represent vortexlike objects. 

6. V O R T I C E S  AS STRINGS 

In this part  we briefly signal another way to consider one-dimensional 
objects of  vortex form existing in superfluid helium. Namely, there are argu- 
ments to treat them as strings, i.e., very thin and long objects possessing a 
nonzero tension. Nielsen and Olesen (1973) have proved the statement that 
the action for objects of  the vortex form described above is equivalent to 
the action of  a N a m b u - G o t o  string. The idea of a fundamental role of  strings 
in physics is still being intensely investigated. It  would be very interesting to 
use it in the theory of superfluid helium. 
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